固態激光雷達原理和工作優劣,說到雷達就是一個信息傳送的裝置,但是固態激光雷達就是現代可以關鍵的傳感技術,在現在5G時代,無人機,無人駕駛的車和智慧城市都需要推動著作用,因為傳感器就是他們的眼睛了,在5G的大時代一定是前途光明!小編就帶大家一起了解固態激光雷達原理了。
固態激光雷達是什么?
固態激光雷達是完全沒有移動部件的雷達,光相控陣(Optical Phased
Array)及Flash是其典型技術路線,也被認為是純固態激光雷達方案。一些非完全旋轉的激光雷達也被統稱為“固態激光雷達”,它們具備了固態激光雷達很多的性能特點,如分辨率高、有限水平FOV(前向而不是360°)等,但這些技術方案會有一些微小的移動部件,從嚴格意義上來說不能算純固態激光雷達。
固態激光雷達工作原理
固態激光雷達主要是依靠波的反射或接收來探測目標的特性,大多源自三維圖像傳感器的研究,實際源自紅外焦平面成像儀,焦平面探測器的焦平面上排列著感光元件陣列,從無限遠處發射的紅外線經過光學系統成像在系統焦平面的這些感光元件上,探測器將接受到光信號轉換為電信號并進行積分放大、采樣保持,通過輸出緩沖和多路傳輸系統,最終送達監視系統形成圖像。
固態激光雷達形成的三種技術路線
經過多年的發展,固態激光雷達的基本框架已經比較清晰了,以下是目前主流的三種方案。
1.MEMS(Micro-Electro-Mechanical System)微機電系統
MEMS指代的是將機械機構進行微型化、電子化的設計,將原本體積較大的機械結構通過微電子工藝集成在硅基芯片上,進行大規模生產。技術成熟,完全可以量產。主要是通過MEMS微鏡來實現垂直方面的一維掃描,整機360度水平旋轉來完成水平掃描,而其光源是采用光纖激光器,這主要是由于905納米的管子重頻做不高,重頻一高平均功率就會太大,會影響激光管的壽命。
從嚴格意義上來說,MEMS并不算是純固態激光雷達,這是因為在MEMS方案中并沒有完全消除機械,而是將機械微型化了,掃描單元變成了MEMS微鏡。
2.OPA(optical phased array)光學相控陣技術
相比其他技術方案,OPA方案給大家描述了一個激光雷達芯片級解決方案的美好前景,它主要是采用多個光源組成陣列,通過控制各光源發光時間差,合成具有特定方向的主光束。然后再加以控制,主光束便可以實現對不同方向的掃描。雷達精度可以做到毫米級,且順應了未來激光雷達固態化、小型化以及低成本化的趨勢,但難點在于如何把單位時間內測量的點云數據提高以及投入成本巨大等問題。
3.Flash
Flash激光雷達的原理也是快閃,它不像MEMS或OPA的方案會去進行掃描,而是短時間直接發射出一大片覆蓋探測區域的激光,再以高度靈敏的接收器,來完成對環境周圍圖像的繪制。
固態激光雷達工作的優劣
利用光學相控陣掃描技術的固態激光雷達的確有很多優勢,例如:
①其結構簡單,尺寸小,無需旋轉部件,在結構和尺寸上可以大大壓縮,提高使用壽命并使其成本降低。
②掃描精度高,光學相控陣的掃描精度取決于控制電信號的精度,可以達到千分之一度量級以上。
③可控性好,在允許的角度范圍內可以做到任意指向,可以在重點區域進行高密度的掃描。
④掃描速度快,光學相控陣的掃描速度取決于所用材料的電子學特性,一般都可以達到MHz量級。
固態激光雷達的劣勢
①掃描角有限,固態意味著激光雷達不能進行360度旋轉,只能探測前方。因此要實現全方位掃描,需在不同方向布置多個(至少前后兩個)固態激光雷達
②旁瓣問題,光柵衍射除了中央明紋外還會形成其他明紋,這一問題會讓激光在最大功率方向以外形成旁瓣,分散激光的能量。
③加工難度高,光學相控陣要求陣列單元尺寸必須不大于半個波長,一般目前激光雷達的工作波長均在1微米左右,故陣列單元的尺寸必須不大于500nm。而且陣列密度越高,能量也越集中,這都提高了對加工精度的要求,需要一定的技術突破。
④接收面大、信噪比差:傳統機械雷達只需要很小的接收窗口,但固態激光雷達卻需要一整個接收面,因此會引入較多的環境光噪聲,增加了掃描解析的難度。
總的來說,目前,固態激光雷達在其本該有的特性上(可靠性強、成本低及測距遠),市面上現有的雷達產品很難同時滿足,這也決定了固態激光雷達在短時間內是很難被產品化。同時也導致了目前所有固態雷達公司的交貨日期都在不斷延長。
固態激光雷達原理和工作優劣雖然很多業內人士預測,未來固態化、小型化、低成本化將是未來激光雷達的發展趨勢,但目前,機械式激光雷達仍是主流。主流當然是海伯森傳感器廠家了,我們是走在時代前沿,為現代工業。5G產品運用的無人機和無人汽車的傳感技術運用到各個科學領域里。